Part Number Hot Search : 
AM4426N X4165S8 LOQ971 1N4698 97A37 PLR131 FB3508 P10N6
Product Description
Full Text Search
 

To Download VNQ5E160AK-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  march 2009 rev 2 1/37 1 VNQ5E160AK-E quad channel high si de driver with analog current sense for automotive applications features general ? inrush current active management by power limitation ? very low stand-by current ? 3.0 v cmos compatible inputs ? optimized electromagnetic emissions ? very low electromag netic susceptibility ? in compliance with the 2002/95/ec european directive ? very low current sense leakage diagnostic functions ? proportional load current sense ? high current sense precision for wide currents range ? current sense disable ? off state openload detection ? output short to vcc detection ? thermal shutdown indication ? overload and short to ground (power limitation) indication protections ? undervoltage shutdown ? overvoltage clamp ? load current limitation ? self limiting of fast thermal transients ? protection against loss of ground and loss of v cc ? over-temperature shutdown with autorestart (thermal shutdown) ? reverse battery protected (see figure 32 ) ? electrostatic discharge protection application all types of resistive, inductive and capacitive loads suitable as led driver description the VNQ5E160AK-E is a double channel high- side driver manufactured in the st proprietary vipower m0-5 technology and housed in the tiny powersso-24 package. the VNQ5E160AK-E is designed to drive 12v automotive grounded loads delivering protection, diagnostics and easy 3v and 5v cmos compatible interface with any microcontroller. the device integrates advanced protective functions such as load cu rrent limitatio n, inrush and overload active management by power limitation, over-tempe rature shut-off with auto-restart and over-voltage active clamp. a dedicated analog current sense pin is associated with every output channel in order to provide ehnanced diagnostic functions including fast detection of overload and short-circuit to ground through power limitatio n indication, over- temperature indication, short-circuit to vcc diagnosis and on & off state open load detection. the current sensing and diagnostic feedback of the whole device can be disabled by pulling the cs_dis pin high to allow sharing of the external sense resistor with other similar devices. max supply voltage v cc 41v operating voltage range v cc 4.5 to 28 v max on-state resist ance (per ch.) r on 160 m current limitation (typ) i limh 10 a off state supply current i s 2 a (1) 1. typical value with all loads connected. powersso-24 www.st.com
contents VNQ5E160AK-E 2/37 contents 1 block diagram and pin co nfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 gnd protection network against reverse battery . . . . . . . . . . . . . . . . . . . 24 3.1.1 solution 1 : resistor in the ground line (rgnd only) . . . . . . . . . . . . . . . 24 3.1.2 solution 2 : diode (dgnd) in the ground line . . . . . . . . . . . . . . . . . . . . 25 3.2 load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 mcu i/os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.1 short to vcc and off state open load detection . . . . . . . . . . . . . . . . . . 27 3.5 maximum demagnetization energy (vcc = 13.5v) . . . . . . . . . . . . . . . . . 28 4 package and pc board thermal da ta . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 powersso-24 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1 ecopack ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 powersso-24 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
VNQ5E160AK-E list of tables 3/37 list of tables table 1. pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 table 2. suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6 table 3. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 table 4. thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 table 5. power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 table 6. switching (vcc = 13v; tj = 25c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 table 7. logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 8. protections and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 9. current sense (8v list of figures VNQ5E160AK-E 4/37 list of figures figure 1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 figure 2. configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 figure 3. current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 4. current sense delay characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 5. openload off-state delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 6. switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 7. delay response time between rising edge of ouput current and rising edge of current sense (cs enabled). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 8. output voltage drop limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 9. iout/ isense vs. iout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 10. maximum current sense ratio drift vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 11. normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 12. overload or short to gnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 13. intermittent overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 14. off-state open load with external circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 15. short to v cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 16. t j evolution in overload or short to gnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 17. off state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 18. high level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 19. input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 20. input low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 21. input high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 22. input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 23. on state resistance vs. t case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 24. on state resistance vs. v cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 25. undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 26. turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 27. i limh vs. t case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 28. turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 29. cs_dis high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 30. cs_dis clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 31. cs_dis low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 32. application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 33. current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 34. maximum turn-off current versus inductance (for each channel) . . . . . . . . . . . . . . . . . . . . 28 figure 35. powersso-24 pc board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 36. rthj-amb vs. pcb copper area in open box free air condition (one channel on). . . . . . . . 29 figure 37. powersso-24 thermal impedance junction ambient single pulse (one channel on). . . . . 30 figure 38. thermal fitting model of a double channel hsd in powersso-24 . . . . . . . . . . . . . . . . . . . 30 figure 39. powersso-24 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 40. powersso-24 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 figure 41. powersso-24 tape and reel shipment (suffix ?tr?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
VNQ5E160AK-E block diagram and pin configuration 5/37 1 block diagram and pin configuration figure 1. block diagram table 1. pin functions name function v cc battery connection output n power output gnd ground connection. must be reverse battery protected by an external diode/resistor network input n voltage controlled input pin with hyster esis, cmos compatible. controls output switch state current sense n analog current sense pin, delivers a current proportional to the load current cs_dis active high cmos compatible pi n, to disable the current sense pin v cc ch 1 control & diagnostic 1 logic driver v on limitation current limitation power clamp off state open load over temp. undervoltage v senseh current sense ch 3 ch 4 ch 2 overload protection (active power limitation) in1 in2 in3 in4 cs1 cs2 cs3 cs4 cs_ dis gnd out4 out3 out2 out1 signal clamp control & diagnostic channels 2, 3 & 4
block diagram and pin configuration VNQ5E160AK-E 6/37 figure 2. configurati on diagram (top view) table 2. suggested connections for unused and not connected pins connection / pin current sense n.c. output input cs_dis floating not allowed x x x x to ground through 1 k resistor x not allowed through 10 k resistor through 10 k resistor input2 current sense2 gnd v cc input1 current sense1 cs_dis. v cc current sense3 input3 input4 current sense4 output2 output2 output1 output1 output1 output2 output4 output4 output3 output3 output3 output4 ta b = v cc
VNQ5E160AK-E electrical specifications 7/37 2 electrical specifications figure 3. current and voltage conventions note: v fn = v outn - v cc during reverse battery condition. 2.1 absolute maximum ratings stressing the device above the rating listed in the ?absolute maximum ratings? table may cause permanent damage to the device. these are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implie d. exposure to the conditions in table below for extended periods may affect device reliability. refer al so to the stmicroelectronics sure program and other relevant quality document. v fn i s i gnd v cc v cc outputn inputn v inn v sensen gnd cs_dis i csd v csd i inn current s ensen v outn i outn i sensen table 3. absolute maximum ratings symbol parameter value unit v cc dc supply voltage 41 v -v cc reverse dc supply voltage 0.3 v -i gnd dc reverse ground pin current 200 ma i out dc output current internally limited a -i out reverse dc output current 6 a i in dc input current -1 to 10 ma i csd dc current sense disable input current -1 to 10 ma -i csense dc reverse cs pin current 200 ma v csense current sense maximum voltage v cc -41 +v cc v v e max maximum switching energy (single pulse) (l= 12 mh; r l =0 ; v bat =13.5v; t jstart =150oc; i out = i liml (typ.) ) 34 mj
electrical specifications VNQ5E160AK-E 8/37 2.2 thermal data v esd electrostatic discharge (human body model: r= 1.5 k ; c= 100 pf) - input - current sense - cs_dis - output - v cc 4000 2000 4000 5000 5000 v v v v v v esd charge device model (cdm-aec-q100-011) 750 v t j junction operating temperature -40 to 150 c t stg storage temperature -55 to 150 c table 3. absolute maximum ratings (continued) symbol parameter value unit table 4. thermal data symbol parameter max. value unit r thj-case thermal resistance junction-case (max) (with one channel on) 8c/w r thj-amb thermal resistance junction-ambient (max) see figure 36. in the thermal section c/w
VNQ5E160AK-E electrical specifications 9/37 2.3 electrical characteristics values specified in th is section are for 8v electrical specifications VNQ5E160AK-E 10/37 table 7. logic inputs symbol parameter test conditions min. typ. max. unit v il input low level voltage 0.9 v i il low level input current v in = 0.9v 1 a v ih input high level voltage 2.1 v i ih high level input current v in = 2.1v 10 a v i(hyst) input hysteresis voltage 0.25 v v icl input clamp voltage i in = 1ma 5.5 7 v i in = -1ma -0.7 v csdl cs_dis low level voltage 0.9 v i csdl low level cs_dis current v csd = 0.9v 1 a v csdh cs_dis high level voltage 2.1 v i csdh high level cs_dis current v csd = 2.1v 10 a v csd(hyst) cs_dis hysteresis voltage 0.25 v v cscl cs_dis clamp voltage i csd = 1ma 5.5 7 v i csd = -1ma -0.7 table 8. protections and diagnostics (1) 1. to ensure long term reliability under heavy overload or s hort circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. if the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. symbol parameter test conditions min. typ. max. unit i limh dc short circuit current v cc = 13v 5v VNQ5E160AK-E electrical specifications 11/37 table 9. current sense (8v electrical specifications VNQ5E160AK-E 12/37 i senseh (2) analog sense output current in fault condition (2) v cc = 13v; v sense = 5 v; 9 ma t dsense1h delay response time from falling edge of cs_dis pin v sense <4v, 0.025a VNQ5E160AK-E electrical specifications 13/37 figure 4. current sense delay characteristics figure 5. openload off-state delay timing figure 6. switching characteristics sense current input load current cs_dis t dsense2h t dsense2l t dsense1l t dsense1h v in v cs t dstkon output stuck to v cc v out > v ol v senseh v out dv out /dt (on) t r 80% 10% t f dv out /dt (off) t d(off) t d(on) input t t 90% t won t woff
electrical specifications VNQ5E160AK-E 14/37 figure 7. delay response time between ri sing edge of ouput current and rising edge of current sense (cs enabled) figure 8. output voltage drop limitation v in i out i sense i outmax i sensemax 90% i sensemax 90% i outmax t dsense2h t t t von iout vcc-vout tj=150 o c tj=25 o c tj=-40 o c von/ron(t)
VNQ5E160AK-E electrical specifications 15/37 figure 9. i out / i sense vs. i out figure 10. maximum current sense ratio drift vs load current note: parameter guaranteed by design; it is not tested. 200 250 300 350 400 450 500 550 600 650 700 0,35 0,58 0,81 1,04 1,27 1,5 max tj = -40 c to 150 c max tj = 25 c to 150 c min tj = 25 c to 150 c min tj = -40 c to 150 c typical value i out / i sense i out (a) -15 -10 -5 0 5 10 15 0,35 0,58 0,81 1,04 1,27 1,5 i out (a) dk/k(%)
electrical specifications VNQ5E160AK-E 16/37 table 11. truth table conditions input output sense (v csd =0v) (1) 1. if the v csd is high, the sense output is at a high impedance, its potential depends on leakage currents and external circuit. normal operation l h l h 0 nominal overtemperature l h l l 0 v senseh undervoltage l h l l 0 0 overload h h x (no power limitation) cycling (power limitation) nominal v senseh short circuit to gnd (power limitation) l h l l 0 v senseh open load off state (with external pull up) lhv senseh short circuit to v cc (external pull up disconnected) l h h h v senseh < nominal negative output voltage clamp ll0
VNQ5E160AK-E electrical specifications 17/37 table 12. electrical transient requirements (part 1) iso 7637-2: 2004(e) test pulse test levels (1) 1. the above test levels must be considered referred to v cc = 13.5v except for pulse 5b. number of pulses or test times burst cycle/pulse repetition time delays and impedance iii iv min. max. 1 -75v -100v 5000 pulses 0.5s 5s 2 ms, 10 2a +37v +50v 5000 pulses 0.2s 5s 50s, 2 3a -100v -150v 1h 90ms 100ms 0.1s, 50 3b +75v +100v 1h 90ms 100ms 0.1s, 50 4 -6v -7v 1 pulse 100ms, 0.01 5b (2) 2. valid in case of external load dump clamp: 40v maximum referred to ground. +65v +87v 1 pulse 400ms, 2 table 13. electrical transient requirements (part 2) iso 7637-2: 2004e test pulse test level results iii vi 1c c 2a c c 3a c c 3b c c 4c c 5b (1) 1. valid in case of external load dump clamp: 40v maximum referred to ground. cc table 14. electrical transient requirements (part 3) class contents c all functions of the device performed as designed after exposure to disturbance. e one or more functions of the device did not perform as designed after exposure to disturbance and cannot be returned to prope r operation without replacing the device.
electrical specifications VNQ5E160AK-E 18/37 2.4 waveforms figure 11. normal operation figure 12. overload or short to gnd i out v sense v cs_dis input nominal load nominal load normal operation power limitation i limh > i liml > i out v sense v cs_dis input thermal cycling overload or short to gnd
VNQ5E160AK-E electrical specifications 19/37 figure 13. intermittent overload figure 14. off-state open load with external circuitry i out v sense v cs_dis input i limh > nominal load intermittent overload i liml > overload v senseh > input off-state open load with external circuitry v ol i out v sense v cs_dis v out v out > v ol t dstk(on) v senseh >
electrical specifications VNQ5E160AK-E 20/37 figure 15. short to v cc figure 16. t j evolution in overload or short to gnd t dstk(on) v out > v ol resistive short to v cc hard short to v cc short to v cc i out v cs_dis v out v ol t dstk(on) t tsd t r t j evolution in overload or short to gnd i limh > < i liml t j_start t hyst power limitation self-limitation of fast thermal transients input i out t j
VNQ5E160AK-E electrical specifications 21/37 2.5 electrical char acteristics curves figure 17. off state output current figure 18. high level input current figure 19. input clamp voltage figure 20. input low level voltage figure 21. input high level voltage figure 22. input hysteresis voltage -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 50 100 150 200 iloff (ma) off state vcc=13v vin=vout=0v -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 iih (a) vin= 2.1 v -50 -25 0 25 50 75 100 125 150 175 tc (c) 5 5,2 5,4 5,6 5,8 6 6,2 6,4 6,6 6,8 7 vicl (v) lin= 1 ma -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 vil (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0,5 1 1,5 2 2,5 3 3,5 4 vih (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 vihyst (v)
electrical specifications VNQ5E160AK-E 22/37 figure 23. on state resistance vs. t case figure 24. on state resistance vs. v cc figure 25. undervoltage shutdown figure 26. turn-on voltage slope figure 27. i limh vs. t case figure 28. turn-off voltage slope -50 -25 0 25 50 75 100 125 150 175 tc (c) 50 100 150 200 250 300 ron (ohm) iout= 1a vcc= 13v 0 5 10 15 20 25 30 35 vcc (v) 100 150 200 250 300 ron (ohm) tc=-40c tc=25c tc=125c tc=150c -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 2 4 6 8 vusd (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 100 200 300 400 500 600 700 800 900 1000 (dvout/dt )on (v/ms) vcc= 13 v ri= 13 ohm -50 -25 0 25 50 75 100 125 150 tc (c) 6 8 10 12 14 ilimh (a) vcc= 13 v -50 -25 0 25 50 75 100 125 150 175 tc (c) 500 600 700 800 900 1000 1100 1200 (dvout/dt )off (v/ms) vcc= 13 v ri= 13 ohm
VNQ5E160AK-E electrical specifications 23/37 figure 29. cs_dis high level voltage figure 30. cs_dis clamp voltage figure 31. cs_dis low level voltage -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0,5 1 1,5 2 2,5 3 3,5 4 vcsdh (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 3 4 5 6 7 8 9 10 vcsdcl(v) iin = 1 ma -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0,5 1 1,5 2 2,5 3 vcsdl (v)
application information VNQ5E160AK-E 24/37 3 application information figure 32. application schematic note: channel 2, 3, 4 have the same internal circuit as channel 1. 3.1 gnd protection network against reverse battery this section provides two solutions for implementing a ground protection network against reverse battery. 3.1.1 solution 1 : resistor in the ground line (r gnd only) this can be used with any type of load. the following is an indication on how to dimension the r gnd resistor. 1. r gnd 600mv / (i s(on)max ) 2. r gnd (? v cc ) / (-i gnd ) where -i gnd is the dc reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet. power dissipation in r gnd (when v cc <0: during reverse battery situations) is: equation 1 p d = (-v cc ) 2 /r gnd v cc gnd output d gnd r gnd d ld cu +5v v gnd cs_dis input r prot r prot current sense r sense r prot c ext
VNQ5E160AK-E application information 25/37 this resistor can be shared amongst several different hsds. please note that the value of this resistor should be calculated with formula (1) where i s(on)max becomes the sum of the maximum on-state currents of the different devices. please note that if the microprocessor ground is not shared by the device ground then the r gnd will produce a shift (i s(on)max * r gnd ) in the input thresholds and the status output values. this shift will vary depending on how ma ny devices are on in the case of several high side drivers sharing the same r gnd . if the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then st suggests to utilize section 3.1.2: solution 2 : diode (dgnd) in the ground line . 3.1.2 solution 2 : diode (d gnd ) in the ground line a resistor (r gnd =1k ) should be inserted in parallel to d gnd if the device drives an inductive load. this small signal diode can be safely shared amongst several different hsds. also in this case, the presence of the grou nd network will produce a shift ( 600mv) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. this shift will not vary if more than one hsd shares t he same diode/resistor network. 3.2 load dump protection d ld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the v cc max dc rating. the same applies if the device is subject to transients on the v cc line that are greater than the ones shown in the iso 7637-2: 2004(e) table. 3.3 mcu i/os protection if a ground protection network is used and negative transient are present on the v cc line, the control pins will be pulled negative. st suggests to insert a resistor (r prot ) in line to prevent the c i/os pins to latch-up. the value of these resistors is a compromise between the leakage current of c and the current required by the hsd i/o s (input levels compatibility) with the latch-up limit of c i/os: equation 2 -v ccpeak /i latchup r prot (v oh c -v ih -v gnd ) / i ihmax calculation example: for v ccpeak = - 100v and i latchup 20ma; v ohc 4.5v 5k r prot 180k recommended values: r prot =10k , c ext =10nf.
application information VNQ5E160AK-E 26/37 3.4 current sense and diagnostic the current sense pin performs a double function (see figure 33: current sense and diagnostic ): current mirror of the load cu rrent in normal operation, delivering a current proportional to the load one according to a know ratio k x . the current i sense can be easily converted to a voltage v sense by means of an external resistor r sense . linearity between i out and v sense is ensured up to 5v minimum (see parameter v sense in table 9: current sense (8v VNQ5E160AK-E application information 27/37 3.4.1 short to v cc and off state ope n load detection short to v cc a short circuit between v cc and output is indicated by the relevant current sense pin set to v senseh during the device off state. small or no current is delivered by the current sense during the on state depending on the nature of the short circuit. off state open load with external circuitry detection of an open load in off mode requires an external pull-up resistor r pu connecting the output to a positive supply voltage v pu . it is preferable v pu to be switched off during the module stand-by mode in order to avoid the overall stand-by current consumption to increase in normal conditions, i.e. when load is connected. an external pull down resistor r pd connected between output and gnd is mandatory to avoid misdetection in case of floating outputs in off state (see figure 33: current sense and diagnostic ). r pd must be selected in order to ensure v out < v olmin unless pulled up by the external circuitry: equation 3 r pd 22 k is recommended. for proper open load detection in off state, the external pull-up resistor must be selected according to the following formula: equation 4 for the values of v olmin ,v olmax , i l(off2)r and i l(off2)f see table 10: openload detection (8v + ? ? ? ? = ?
application information VNQ5E160AK-E 28/37 3.5 maximum demagnetization energy (v cc =13.5v) figure 34. maximum turn-off current versus inductance (for each channel) note: values are generated with r l =0 . in case of repetitive pulses, t jstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves a and b. 0,1 1 10 100 0,1 1 10 100 l (mh) i (a) demagnetization demagnetization demagnetization t v in , i l c: t jstart = 125c repetitive pulse a: t jstart = 150c single pulse b: t jstart = 100c repetitive pulse a b c
VNQ5E160AK-E package and pc board thermal data 29/37 4 package and pc board thermal data 4.1 powersso-24 thermal data figure 35. powersso-24 pc board note: layout condition of r th and z th measurements (pcb: double layer, thermal vias, fr4 area= 77 mm x 86 mm, pcb thickness=1.6 mm, cu thickness=70 mm (front and back side), copper areas: from minimum pad lay-out to 8 cm 2 ). figure 36. r thj-amb vs. pcb copper area in open box fr ee air condition (one channel on) 30 35 40 45 50 55 60 0246810 rthj_amb(c/w) pcb cu heatsink area (cm^2)
package and pc board th ermal data VNQ5E160AK-E 30/37 figure 37. powersso-24 thermal impedan ce junction ambient single pulse (one channel on) figure 38. thermal fitting model of a double channel hsd in powersso-24 (a) 0.1 1 10 100 1000 0.0001 0.001 0.01 0.1 1 10 100 1000 time (s) zth (c/w) footprint 8 cm 2 2 cm 2
VNQ5E160AK-E package and pc board thermal data 31/37 equation 5 : pulse calculation formula : where = t p /t a. the fitting model is a semplified thermal tool and is valid for transient evol utions where the embedded protections (power limitation or thermal cycling during ther mal shutdown) are not triggered. table 15. thermal parameters area/island (cm 2 )footprint28 r1 = r7 = r9 = r11 (c/w) 1.2 r2 = r8 = r10 = r12 (c/w) 6 r3 (c/w) 6 r4 (c/w) 7.7 r5 (c/w) 9 9 8 r6 (c/w) 28 17 10 c1 = c7 = c9 = c11 (w.s/c) 0.0008 c2 = c8 = c10 = c12 (w.s/c) 0.0016 c3 (w.s/c) 0.025 c4 (w.s/c) 0.75 c5 (w.s/c) 1 4 9 c6 (w.s/c) 2.2 5 17 z th r th z thtp 1 ? () + ? =
package and packing information VNQ5E160AK-E 32/37 5 package and packing information 5.1 ecopack ? in order to meet environmental requirements, st offers these devices in different grades of ecopack? packages, depending on their level of environmental compliance. ecopack? specifications, grade definitions and product status are available at: www.st.com . ecopack? is an st trademark. 5.2 powersso-24 mechanical data figure 39. powersso-24 package dimensions
VNQ5E160AK-E package and packing information 33/37 table 16. powersso-24 mechanical data (1) (2) 1. no intrusion allowed inwards the leads. 2. flash or bleeds on exposed die pad shall not exceed 0.5 mm per side symbol millimeters min. typ. max. a 2.45 a2 2.15 2.35 a1 0 0.1 b0.33 0.51 c0.23 0.32 d (3) 3. ?d and e? do not include mold flash or protusions. mold flash or protusions s hall not exceed 0.15 mm per side 10.10 10.50 e (3) 7.40 7.60 e0.8 e3 8.8 f2.3 g 0.1 h 10.1 10.5 h 0.4 k0 8 l0.6 1 o1.2 q0.8 s2.9 t3.65 u1.0 n 10 x4.1 4.7 y6.5 7.1
package and packing information VNQ5E160AK-E 34/37 5.3 packing information figure 40. powersso-24 tube shipment (no suffix) figure 41. powersso-24 tape and reel shipment (suffix ?tr?) a c b all dimensions are in mm. base q.ty 49 bulk q.ty 1225 tube length ( 0.5) 532 a 3.5 b 13.8 c ( 0.1) 0.6 base q.ty 1000 bulk q.ty 1000 a (max) 330 b (min) 1.5 c ( 0.2) 13 f 20.2 g (+ 2 / -0) 24.4 n (min) 100 t (max) 30.4 reel dimensions tape dimensions according to electronic industries association (eia) standard 481 rev. a, feb 1986 all dimensions are in mm. tape width w 24 tape hole spacing p0 ( 0.1) 4 component spacing p 12 hole diameter d ( 0.05) 1.55 hole diameter d1 (min) 1.5 hole position f ( 0.1) 11.5 compartment depth k (max) 2.85 hole spacing p1 ( 0.1) 2 top cover tape end start no components no components components 500mm min 500mm min empty components pockets saled with cover tape. user direction of feed
VNQ5E160AK-E order codes 35/37 6 order codes table 17. device summary package order codes tube tape and reel powersso-24 VNQ5E160AK-E vnq5e160aktr-e
revision history VNQ5E160AK-E 36/37 7 revision history table 18. document revision history date revision changes 05-jun-2007 1 initial release. 17-mar-2009 2 document restructured. updated table 9: current sense (8v VNQ5E160AK-E 37/37 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by an authorized st representative, st products are not recommended, authorized or warranted for use in military , air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2009 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of VNQ5E160AK-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X